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Abstract—The exact transient closed form solutions for applying time-dependent point forces and
displacement jumps at a depth below the surface of an elastic hall plane are obtained in this study.
A new methodology for constructing the reflected field is proposed and is shown to be both powerful
and efficient. The solution of an exponentially distributed loading in the Laplace transform domain
at the surface of a half plane is considered as the fundamental solution. The waves reflected from
the free surface caused by the incident waves can be constructed by superimposing the fundamental
solution. The numerical results of stress and displacement fields during the transient process are
obtained and compared with the corresponding static value. It is shown in this study that the
dynamic transient solution will approach the static value after the last reflected wave has passed.

I. INTRODUCTION

The propagation of stress waves through an unbounded medium is not a difficult subject.
It the boundary is introduced, however, reflected waves will be gencerated from the free
surface. making the problem more complicated. The classical analysis in this arca was first
proposced by Lamb (1904) ; he considered the half space subjected to point and line loads
on the surfuce of a semi-infinite half space. Since this carly analysis of Lamb, a great
many contributions have appeared, pertaining to what is commonly referred to as Lamb's
problem. Buricd source problems are of considerable interest in seismology and have been
studied by many investigators, including Lamb. Nakano (1925) analyzed the buried line
dilatation source in a half space, but he failed in gencralizing his harmonic steady state
results to transient solutions. Lapwood (1949) re-studied Nakano's problem, and later
Garvin (1956) also solved Nukano's buried line dilatation source problem by using a
suitable distortion of the contour suggested by the work of Cagniard. In Garvin's paper,
the numerical results are limited to surface displacement due to a dilatation source, and the
generated waves in the medium are incident P waves, reflected PP waves and PS waves.
The three-dimensional problem of a buried vertical point source was studied by Pekeris
(19554.b) and Pckenis and Lifson (1957). Pekeris divided the half space into two regions
horizontally along the loading position, and then applied Laplace and Hankel transforms
to solve this problem. From the traction-free boundary condition and the continuity require-
ment at the intersection of the two regions, complicated solutions were represented in
integral form and only the surface displacements were obtained numerically. Based on
similar methodology, Payton (1967, 1968) solved the displacement of a free surface and an
axial line of two-dimensional half space subjected to a buried line source. The suddenly
applied normal point load which travels on the surface was first derived by Gakenheimer
and Miklowitz (1969). The Laplace and Fourier transforms were employed to solve the
problem, and the Cagniard-de Hoop mcthod (1958) was applied to invert the transform.
In this paper. the transient response of applying a point force and displacement
jump in an arbitrary direction under the two-dimensional half space is investigated by an
alternative methodology, and the exact closed form solutions of the full field will be
demonstrated. The two-dimensional static solutions of the stress distribution due to point
loads applied within the elastic half plane has been solved by Melan (1932). These solutions
were extended and applied to the direct boundary element method for half plane problems
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by Telles and Brebbia (1981). The three-dimensional static fundamental solution for the
half space has been solved by Mindlin (1936). and its application to the boundary element
method has also been established by Nakaguma (1979). From the transient results of this
study. it is believed that this analysis will shed some light on the development of the
elastodynamic boundary element for half plane problems.

In this investigation. the transient response of buried point forces and displacement
jumps in the vertical and horizontal directions of the half surface will be studied in detail.
Some solutions have been published by a number of investigators. but none have provided
a complete analysis of this problem. A different analytical approach is proposed and is used
successfully to obtain the exact transient solution in this study. Fundamental solutions of
applying exponentially distributed traction in the Laplace transform domain are established
preliminarily in order to construct the more complicated reflected response. From physical
considerations, the reflected fields are generated in order to eliminate the stress induced by
incident waves in the traction-free surface. For most incident problems. the stress field in
the Laplace transform domain (with respect to time) can be represented in an integral form
of Laplace inversion (with respect to coordinates). the kernel of which is usually an
exponential function. Hence, if the response from applying exponentially distributed trac-
tion in the Laplace transform domain can be solved preliminarily, the reflected full field
can then be constructed by the superposition method. Because the application of super-
position over the new fundamental solution involves only onc parameter, it will be more
convenient than the superposition of other methods using two parameters. The results
described in this paper are exact and are expressed in a simple closed form, cach math-
ematical term representing a physical transient wave, The results of the numerical cal-
culations of stress and displacement are used to investigate the characteristic time during
which the transient effect is important.

2. REQUIRED FUNDAMENTAL SOLUTIONS

In conventional studics of transient stress waves, the solution of Lamb’s problem for
applied point loading at the surface of a half plane was regarded as the fundamental
solution. The generation of reflected waves from the free surface can be obtained by
superimposing the fundamental solution of Lamb’s problem over time and space ; hence it
involves multiple integrals. Computational inefficicncy and complexity can thus be expected.
In this paper, an alternative fundamental solution in the Laplace transform domain is
proposced. The advantage of using this new fundamental solution is that the superposition
process involves only onc integral.

Consider a plane strain deformation of half space, with an infinite series ol exponential
propagation traction force applied on the surface at time ¢ = 0. The traction forces can be
divided into four categories which contain normal force and tangential force for symmetric
and anti-symmetric distribution.

2.1. Fundumental solution of the symmetric normal traction

In the case of a half space which is initially at rest, the geometry and coordinate system
are shown in Fig. 1. The surface (x, = 0) is subjected to an infinite series of exponentially
distributed normal forces of complex form, which can be represented by the following
integral form:

— X
B
S

2 "

—

Fig. 1. Configuration and coordinate system of a half plane subjected to an interior dynamic point
source.
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x

1
05:(x,,0,0) =EJ‘ exp (— (p1d, —pads)|x, | +p1 1)

x exp (i(—(p2d, +pid) x| +p:1))dp; for —o0 <x; <. (1)

The physical meaning of (1) is that the loading strength varies in a wave form with an
extended velocity of p,/(p.d; —p.d,) and is coupled with a harmonic phase variation. If we
let variables p = p, +ip, and d = d, +id,, then (1) becomes

P +in

05.(x,.0.0) = — e Mui*rrdp for —o0 < x, < 00, (¢
g p—ix

and the boundary condition of the tangential traction is
67:(x,,0,0) =0 for —o0 <x, < 0. (3)

The governing equations can be represented by the longitudinal potential ¢ and the shear
potential Y as follows

Vip—a’d =0, 4

Viy—by =0, 5

[o 1 \/5 !
a = —_— b= - —
y+2n vy uo,

a and b are the slowness of the longitudinal wave and the shear wave, u and p are the shear
modulus and the mass density, and y is the Lameé elastic constant. The displacement and
stress can be derived from the potentials

where

o =7V2¢+2u(g;§+a—j;z—g—x;), (8)

This problem can be solved by the application of integral transforms. The one-sided
Laplace transform over time and the two-sided Laplace transform over x, for a function
¢ is defined by
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d;‘(}.,xz,p) = [- e“’“'j d(x,.x:.t)e " dedx,. (1)
-x 0

o

The appropriate expressions for d;‘ and ¢* can be represented in the forms
pprop p P

o* = O(i. x,, p)e ", (12)
¥* = V(A x; p)e P, (13)
where
a=(a*—-i)" B=(b"-iH"
The boundary conditions indicated in (2) and (3) in the Laplace transform domain become
65:(x,,0,p) =e ™! for —x <x, < o, (14)
13(x.0,p) =0 for —o0 <x, <cC. (15)

Equation (14) can be regarded as the exponentially distributed traction in the Laplace
domain. Taking the bilateral Laplace transform on x, under the restriction of Re (d+ 1) > 0,
then

2d

pa =1 a0

633(4,0.p) =

612(4,0,p) = 0. (17

Substituting (12) and (13) into (9), (10), (16) and (17). the unknowns ®(4, x,, p) and
W(4, X1, p) can be solved, and the full field solutions can be obtained. Here, only 65, and
i@ are presented in the Laplace transform domain, as follows:

» U (2d(b*=24% . Sdapi
d';z(x,,xz, p) = %J'-k—(jz—_}—z)—- e PR rPAT, me phe; +pix, dj_, (l8)
. 1 {2da(b*—=24%) dddai’ ,
yld _ e | A T ampaxydplyy e aPBxy¥pix, 34
Blxexnp) = =5 | R@ =1 © wpRd =7 ¢ al,

(19)
where R is the Rayleigh wave equation, defined by
R = (b*=2A%)7+4:p.
2.2. Fundamental solution of the anti-symmetric normal traction
Consider the case in which normal tractions are anti-symmetric with respect to the x,

axis, then the boundary conditions in the Laplace transform domain are

G5:(x,,0,p) = e for —x < x, <0.

= —e ™ for 0<x, <co, (20
45(x,,0,p) =0 for —oo <x, < 0. @n

From a procedure similar to the case of symmetric normal traction discussed in Section
2.1, 6%, and &% can be obtained as
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1 [24(b%=24%)° 8api’ .
6h:(x. X2, p) = "'_J'ciJ-__R(—(Zi—-z——_}ZT)c—lmz”‘Lxl + sz;—[zj eriridd, (22)

1 [2x4(b°—24° 42’ ,
a5(x.x2.p) = ~ I ( ) - pusspie e PPratpini d],

W R =7) T wR@ =10
(23)
2.3. Fundamental solution of the symmetric tangential traction
Consider tangential tractions at the surface which are symmetric with respect to the
X, axis; we have
5:(x.0.p) =0 for —o0 <x < 0, (24)

65:(x,.0,p) =e P for —o0 <x < 0. (25)

The full field solutions of 6%, and @ in the Laplace transform domain are

. ABdA(b* —=247) 4BdA(b* —24%)
¥ pax,+plx, —pﬁ.t +pix,
U:w(\‘l, Xa, p) nlj ((1' ) [+ + ————__—(d‘ ? dl, (26)
I | dafdi —paxy spix, 2di(hr—207) e-Phsy +pis,
ah(x,. X p) = i | iR =1 )e - pR(dz—}.z) di. @27

2.4. Fundamental solution of the anti-symmetric tangential traction
When the tangential tractions are anti-symmetric with respect to the x, axis, the
boundary conditions are

65:(x,,0,p) =0 for —o0 < x, <0, (28)

¢ (x,0,p) =™ for —o<x, <0

= - for 0<x, <. (29)
The full field solutions of ¢4, and &% are

—4Bi2(b* —24%) _me‘%4;812(b2 21%)

= | — 7 -pﬂx;+pu.
2ni R(d*=1%) R(d*-1?) a4, (0)

| 4affi? —paxy rphe, 2A3(b*-21%) o - +pl,
ih(x,. X3 p) = ,[upR(d' lz)e upR(dz—lz) di. 3D

3. TRANSIENT SOLUTIONS OF BURIED POINT SOURCES

In this study, two types of point forces and displacement jumps are considered. The
direction of any applicd point force and displacement jump can be divided into directions
which are perpendicular and parallel to the free surface. Any solution of arbitrary direction
can be constructed by the combination of the solutions of these two directions. The transient
elastodynamic problems of half space can be solved by superposition of the incident and
reflected waves. The full ficld solution of the incident field is denoted by the superscript /
and the reflected field by superscript R. The incident field is the response from loading
applied on an unbounded medium, and the reflected field is the solution of loading applied
to a traction-free surface to eliminate the stress induced by the incident wave.
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3.1. Vertical concentrated force

Consider an isotropic linear elastic half space ; the elastic medium occupies the region
—x € x; € x,x; > 0. Initially, the body is stress-free and at rest. At time ¢t = 0, a vertical
concentrated force along the positive x, axis is applied at the position of distance 4 under
the free surface. The time dependence of the loading is represented by ¢, f(¢) with the
geometry and coordinate system shown in Fig. 1. The point force is represented by

022X AT ) —05(x 1 A7, ) = —0o f(DE(x)), (32)

where f(r) vanishes for ¢+ < 0. Incident fields in the Laplace transform domain can be
represented as (Achenbach, 1973)

i 2ni

&

a_,“ =G’o Sgn(,l'—X:) J.pF(p)[:b:Z—Z;ze prixy ~hl ~ plh,]+l; e —pBley—hi - plll’l‘]dl (33)

2 _ Josgn(x) W puieg-ni-piiet . A0 =28 e i 34
0= i J F(p )[ € + 26%8 € di, (34)

52
@ f F( )[ZB;e pley ~Hi - ”“"'+2——~Zzpc"”"‘="'""‘""']d/1. (35)

For convenience, we define the following functions:

E|(}.) =¢ -pale, -hl#pl.t" EZ(;') = e-pﬂl,tz-hlfpl,\',’ (36)
() = sen (h—xy) 22 hesx2) 37
An( )'—5&.“('—'\’:)“‘2‘[)2 , Aa(4) = sgn( “\’z)bz‘ (37)

a A
BII(A)=2_5';7- Blz(l)‘_-i‘b—z“ﬂ‘- (38)

The sgn (x,) function represents the symbol + or — depending on the sign of variable x, ;
F(p) is the Laplace transform of f(¢).

The stresses 6,, and ¢,,, which should be applied at x, = 0 to eliminate the incident
wave, can be deduced from (33) and (34) in the Laplace transform domain, that is

b?— 242 a2
0-22 = - % pF(P)[ 2b2 c"Pﬂﬁ-Pllxﬂ + b—fe_,’ﬁh-p“xl’]di’ (39)
G2 = @_S%I(_"_) PE(p )[ g -Pah=pix,| 1(b2b—2;.;2) -pm--m.u]dz. (40)

From (39) and (40), we can see that the applied tractions in space, in order to eliminate
the incident wave, are represented by the function e ~***!!, Since the solutions of applying
traction e ~™'%\! at the surface have been solved in Section 2. the refiected field induced by
applying loading of (39) and (40) can be constructed by superposition and replacing 1 by
d. When we combine eqns (18), (19), (30) and (31), the reflected waves for 6 ,, in the Laplace
transform domain can be expressed as follows :
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oopF(p) (| b?=2d* __ ., d* _...
-~ [ BT e

¢h2(x 1. x2,p) =

2 222 32
1 J'Zd(b —~2i%) emrariri, | 8dxfA

U T a—PBxy+pix| 42
“Ini ) R@ =) R@-15° didd
oopF(p) da* .. d(b’-2d?) _,,.h]
+ i ”: s ¢ + 275 €

AR KI5 12(p2__9;2
l.[ BT = 287) s, B =20) ppivnis g 4a, (a1

2ni)  RW=79) R(d*=4%)
where
a* = (al__dZ)l/Z’ Bt = (bz_dz)l,’z_

From the restriction of Re (d+4) > 0, the integral path of 4 must be located at the
right-hand side of 4. Thus, if the integral path of d is changed to go through the imaginary
axis, the integrals of pole at d = 4 or — A must be considered. Since (41) is an odd function
of d. the integral along the imaginary axis will vanish, Finally, from Cauchy’s integral
theorem, the original integrals of (41) can be further reduced as

aopF i
e =20 S 4, WED AL (@2)
o rj<3
where
L = (=20 AN (B =24Y) ~d4afii(b* =243
A4 = 252R , A(A) = bR '
=223 =24Y)? AN —24) —4apit
Ays(4) = R . A\s(A) = 5 R . (43)

Ey(4) = e AL E(A) = e PPxi—pahtpls,

Es(A) = g Prrrmpbhpln, E¢(A) = e~PBUy v +pix, (44)
Displacement #, can also be obtained as

6

ooF(p)

-R —
i8(x,,x5p) = i r/:[‘}B.,(}.)E,().) da, (45)
where
a(b?—24%)* —4PaA? 2aA%(b* —24%)
B;(A) = 25°R . B“(A):—ET—’
2ui(h* =242 4aflt — 23?2472
By = 2O ) Bl = Zb,(BR ) (46)

3.2, Horizontal concentrated force

Consider the same geometry and coordinate system as shown in Fig. 1, the loading is
applied horizontally and has the same direction as the positive x, axis. The incident fields
in the Laplace transform domain will be
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= —ij » Z Ay (A)E (2)d4, 47
g 2 “ N N
@ = M‘;ﬂ F(’”,.Zl By, (A)E;(A) dé, (48)
where
Ab*=24%) _ B
Ap(d) = —2b‘;—* Ayp(d) = PR 49)

Bzz()») = —sgn (h— X

. i A
B2 (4) = sgn(h—x,) 25 2 z)ﬁ- (50)

Following the same arguments as in Section 3.1, the reflected fields in the Laplace transform
domain can be obtained as

oo pF
5(x . X2, p) = —"—g-—(’i) Z Ay (A)E,(A)dA, 1)
1143 r;
-R _ GOF(p) : ’ -
as(x,, x,,p) = i e j;} By, (A)E;(A)dA, (52)
where
—A(b* =212 +4afA3(h? -217) 4813(b2=22%
Axn(d) = ZbZaRﬁ ¢ , Au(d) = ‘—‘—“‘“—‘ﬂ b(z .
2BA(b? —24M)1 4afii’ - BA(b =247
Azs()-) = i—FRT"—, Ap(d) = /} ﬁ:(R .
(53)
(b2 =22%)~4afd’ 223(b* =24
Bz)(l) = ( ZbZR ﬁ 9, 824(1) = ——————-———( bzR N
—2aBi(b* =217 —4afl’ + A(b2 =242
Bys(4) = bIR , By(2) = bR (54)

3.3. Vertical concentrated displacement jump

Consider a concentrated displacement jump which is emitted from distance & under
the free surface suddenly applied at time ¢ = 0 along the vertical direction. The displacement
jump can be represented by

(e A ) —uy (X b 1) = ug f(1)0(x,). (55

The incident fields in the Laplace transform domain are
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iy =52 | pF () Z A3 (DE,(3) dA, (56)
@ = 2—~pr (p) Z By, (D) E;(4) d4, (57)
where
By, = —sgn(h—x, ){)——-zﬁ. B;, = ——sgn(h—vz)z—j. (59)
The reflected fields can be obtained as follows:
G (x1. X p) = ﬁ"i’z’—{ﬂ Z Ay (DE (4 dA, (60)
) =550 | ¥ 8, WE WL (61)
where
An(d) = (hz—uz)‘-;:?f;{:(hz-uz)z' An(d) = 4_/;1_2(12_2_;22_)1
Ay = 4/}12(22;212)2’ Asl) = 80:/}2,1‘—22?.;([)2—212)3. )
Byl = —(b’—2}.2)’2-{1-);1;/!/1’([)’—212)' Byl = ~ 2;.2(1;;2—523.-2)_2’
Byl = — 4aﬂ122€;—212), Buul) = 12(b2—22::—4a/w 3

3.4. Horizontal concentrated displacement jump
If the displacement jump is in the horizontal x, direction, the incident fields in the
Laplace transform domain are

2
G4y = %’T‘t_‘;f,ﬁp(p) 2 Ay(DE,() di. (64)
J-

i =5 JPF (r) Z B (AE,(1)dA, (65)

where
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. (62 =24%) (b —227) 2842
Ay(f) = -~ 2pin s Av( )‘"‘"b_, (66)
. 242 A2
Bu() = —sgn(h—e9 L2 B = sgn (h-x) . (67)
The reflected fields are
F
8 (x1, X2, p) = ﬁ‘i‘?%a-ﬁf’l 2,4‘,,.(;)1-: () di. (68)
F
8 (x, x0 p) = 2oPEP) Z B, (A)E,(A) dA, (69)
2mi r;
where
) = (67 =221 (b = 24%) —daPAi(b? — 247)(6* — 22%)
a4 = 2h%aR
4B (b =242 (b =20
An() = BAs( b’R( a )‘
 4BAh =247 —8afiit 4+ 203 (b —247)?
At = TS iy = T be( )
~(h -—2}’)’(!)*—-2(1 )+4a/§xz(b°—2a2)
Bt = R
= 2i(b =243 (b =227
844(;') - bzR .
dafii(b? — 22 dafiit — A3 (bT —22%)?
Bty = PEATZ2) g SR an

The remaining task is to evaluate the inverse transforms of the above expressions for
reflected fields.

4. CAGNIARD-DE HOOP METHOD

The full field solutions represented in the previous section are in the Laplace transform
domain. By the application of the Cagniard-de Hoop method of Laplace inversion, the
path of integration is deformed in such a way that the inverse Laplace transform of the
integral along the new distortion path of integration can be readily obtained. From the
following elementary property of the one-sided Laplace transform,

z7 U ) e-f'gmd’} = gH(—1)), (72)

the inversion of the two transforms can be operated at one time. We will consider the stress
0, in some detail. For the first term of (42), consider now a new integration variable ¢
defined by

a(x'z +h) "‘;..Y! ={. (73)

Equation (73) can be solved for 4 to yield
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. t S
Ar (r2.60,,0) = — o cos @, +i s —a* sin 8., 74)
where

2 X| - .2
r; = (x;+h)’+x}, cosf,=—, sinéb,
rs ry

This represents essentially a transformation from the t-plane to the A-plane which
changes the path of integration ' to I', . In the A-plane, (74) describes a hyperbola as shown
in Fig. 2a. When ¢ = ar, = Tg,. the imaginary part of 4 vanishes. and the vertex of the
hyperbola is defined by A = —a cos 6,. As time ¢ increases from ar, to oo, the integral path
approaches a straight line in the A-plane having a slope of tan 8, and passing through the
origin. The hyperbola paths I', and I'_ are shown in Fig. 2a. This path will be a suitable
deformed integral contour to replace the original integral path I'. The first term of (42)
becomes

1{~® ai
0'-22 = UOPF(p)‘j Im [Alg(lg) _}‘]C—p' df, (75)
n)r,. at

where 43 = A¢ (r;.0;,¢) of (74). From the convolution property of (72), the inversion of
the Laplace transform in the time domain is

tdf(r) 043

032(X), X2, 1) = 0, . dr Im| A45(4y) o dr, (76)

where ¢ = t—1 and 4, becomes a function of t. The wave front arrives at time ¢t = Tp,

with the subscript PP denoting the primary wave reflected by the incident primary wave,
As the Cagniard-de Hoop method is employed on the sccond term of (42), let

fx:+ah—Aix, =1t (77

We cannot solve analytically for 4, but from the formulation of a quartic algebraic equation,
the roots can be obtained explicitly. When the imaginary part of 4 vanishes, the cor-
respondence time ¢ is denoted by Tpy. As f extends from Tpg to oo, the integral path extends
from a hyperbola curve and approaches a straight line, as shown in Fig. 2a. The vertex of
the hyperbola is located on the real axis between the branch points at —« and a. The second
term of (42) then becomes

ImN

o € ReA

Fig. 2a. Deformed integral contour as presented in (74) and (77).

SAS 28:8-C
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ImA

ReX

Fig. 2b. Deformed integral contour as presented in (81) and (84).

I [* 04
G22(x1. X2, p) = 6o pF(p) ;J; Im [A 14(44) (‘574]34'" ds. (78)

The inversion of the Laplace transform is

tdf(r) 04
g22(x), %3, 0) = Un[ “faf‘,‘“ Im [«414(14)(5:‘](11. (79)

rI’,\‘
where 4, is the root of (77) and Trg denotes the time at which the reflected sccondary wave

front generated by the incident primary wave arrives. d4,/0t can be obtained by taking a
derivative on (77), which yields

Ly AsXs Agh
O _ _1/(—13:-4- r-i— +-n>- (80)

A similar procedure is applied to the third term of (42) ; let
ox,+ph—Ax, =t (81)

Following the same argument as described in (77)—(80), this becomes

g |* dS(r)

OA
022(%y, %2, 1) = — dr Im| A,5(%s) s dr, (82)

TSI’

where A is the root of (81), and

3}.5 }.5XZ }._r,h
E"'/( . +-/}-—+x.>. (83)

Tsp denotes the time at which the reflected primary wave induced by the incident secondary
wave arrives. The deformed integral path is shown in Fig. 2b. The intersection with the real
axis is always located in the region between —a and a.

Now let us consider the fourth term of (42). When we let

B(xz+h)—dx, =1, (84)

(84) can be solved for 4 explicitly to yicld



Point forces and displacement jumps for an elastic half space 967

2,
}.rz(rz,ez.l) = -rLCOS 02ii ;E"'b. sin 02. (85)
2 2

When ¢ = br,, it indicates the time at which the reflected secondary wave front generated
by the incident secondary wave arrives, and is denoted by Tss. The deformed integral
contour is shown in Fig. 2b. If b|cos 8,| > a, an additional integral path from ¢ = Ty, to
t = Tss, which embraces the branch cut, must be considered. In this integral interval, 4 is
real and is represented as follows :

t [, ¢
A.”:(rz,ob l) = — ;'—'COS 02+Sgn (x,) bZ_ ;‘Z‘Sin 02 for THD <t< Tss, (86)
2 2
where

Typ = arylcos 8, +r, /b* —a’sin 6,. 87

This additional integral path represents the head wave induced by the incident secondary
wave, where the wave front of the head wave arrives at time ¢t = T,,. The final form of the
fourth term of (42) becomes

G22(X1. X2e :)_%‘IL 9—{1-(,——)1 [ ,‘,().,)(?}1]1{(“ ) dr
L0 | )

T Jre dr

Im [A.a(m %?]dr. (88)

where Ay = Ar (r2.0:.7) of (85), and 4, =1, (r2.0,.17) of (86). The other stress and
displacement reflected fields presented in the previous section can be derived in a similar
manner, thus the details are omitted here. If the loading history f(¢) is a Heaviside function
H (1), the exact explicit transient solutions can be obtained and are summarized as follows,

4.1. For point force

a!l(xlvxhl) = Z [ ,/() ;h ]H(('—T)

*g,f'"‘[ .AM“’](H(: T —H(—T4), (89)

1] & a
u:(xth,f) = ;;/zl [ ,1(}./) ]drH(l—T/)
() ! 017
+—1] Im [B,.,(IL) ——]H(T«. -t dtH(t-T;), (90)
), ot

where i is valid for 1 and 2, representing the cases of the vertical and horizontal concentrated
forces, respectively.
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4.2, For displucement jump

F23(X;. Ko ,_‘_‘;‘_‘1_ z lm[i{,(z) ]H(l—T)

s=1

+‘ﬂ§1m[.ﬁ(/7) ](H(r—Tn—H(l—T«” b

u:(x,. Xs8) = — Z Im [B,,(/) :IH(I

j=1

Uy

—Im[.o(/v) ](H([“T7) H(t1—Tg)). (92)

where i is valid for 3 and 4, representing the cases of the vertical and horizontal concentrated
displacement jumps, respectively. The j values represent the P, S, PP, PS, SP. S§S and HD
waves in the sequence of 1-7. The last terms of (89)-(92) represent the head wave which
only exists in the region b|cos 8,| > a. The functions 4, and 4, are obtained from the
incident P and S waves and are defined as

t [
i) =——cosl,+i |~ —a*sinl,,
r ri

' g
A1) = — - cos (),+i\/ ,—=bsinl),, (93)
r ri
where
5 5 5 RY . .\'v—/
ri= (=M +x5. cosl, = L, sinf); = AL ll.
r ry

5. NUMERICAL RESULTS

A structural steel of Poisson’s ratiov = 0.3 and b = 1.8708« is chosen for the numerical
calculation. When the point forces and displacement jumps are applied suddenly at the
point (0, 1), the induced wave fronts of incident and reflected waves are as shown in Fig.
3. The figure also illustrates the processes for the development of the reflected waves. Using

Fig. 3. Wave fronts of the incident waves and reflected waves at t/ah = 4.
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the concept of image method, on the opposite side there is an image source from which the
reflected PP and SS waves emit. When the PP wave is generated, the traction-free condition
at the free boundary will not be satisfied ; thus the coupled PS wave must be generated at
the same time. After some time delay, the reflected SP wave induced by the incident shear
S wave will be coupled with a head wave HD in order to satisfy the traction-free boundary
condition. Finally, the reflected SS wave is emitted following the head wave. The wave
fronts of P, S and PP, SS are cylindrical curves emitted from the source and image, the HD
wave is an inclined straight line, and PS and SP wave fronts are smooth curves which
are constructed by numerical calculations. The head wave only occurs in the region of
a; b < cos 6,. In this section, numerical results for applying the Heaviside function of time
dependence for point sources in the interior of a half space are evaluated. The field points
are selected at (0.54,0.5k) denoted by A and (2h,0.5h) by B. Transient responses of 6.,
and u. are obtained and are presented in Figs 4-7. The point B will be subjected to the
disturbance of the head wave. The static solutions are also shown in these figures. The
transient solution approaches the static solution as time increases beyond theoretical
bounds.

If we apply point force of Heaviside function dependence, the stress fields behave as
the square root singularity at the wave front, except in the case of the head wave. The
displacement ficlds are continuous at the wave fronts. For the case of applying displacement
jump of Heaviside function dependence, the singularity of the stress fields at the wave front
will be one order stronger than the case of the point force.

Telles and Brebbia (1981) obtained the static results of a half space when applying
static point force. The transicnt analysis in this study tends toward the corresponding static
value, as expected. The static value of the applied displacement jump under half space is
not available in the published literature, but the numerical calculations of the static value
are not diflicult. Generally speaking, the dynamic transient effect is important under
dynamic loading conditions. The dynamic response of stress in the transient period is much
greater than its static value. In the transient period, the tensile or compressive effect will
change radically when the reflected wave arrives, When the SS wave passes the field point,
the ficld value of stress or displacement will very rapidly tend toward the static value, Table
I shows the ratio of the dynamic value to the static value after the SS wave has passed.

_ Another particularly interesting phenomenon observed in the present work is the onset
and development of the Rayleigh wave disturbance as x,/h increases. At the far field, i.e. a
lurge value of x|, the effect of the Rayleigh pole at the deformed integral contour of the
Cagniard-de Hoop method must be considered. The Rayleigh wave will become significant
when x,/h is larger than 10, and a large displacement disturbance on the free surface will
be gencrated as the Rayleigh wave arrives, The vertical displacement is shown in Fig,. 8 for
various times t/ah, and it clearly shows the birth of Rayleigh wave. The Rayleigh wave
suffers no attenuation and remains essentially unchanged in shape.

6. CONCLUSION

The stresses and displacements generated by the application of a point force and
displacement jump to an elastic half space comprise the basic solution for the half space.

Table 1. Comparisons of the transicnt dynamic values and static values of point A
after SS wave has passed

0::/0%; uy/uf

Load Load
tjah 4] (2) 3) 4) Q) ) 3 4)

1.526 1.104 0987 0967 1150 1.332 0990 0982
1.343  1.061 0993 0.980 1.096 1.233 0997 0.994
1.243 1037 0996 0.988 1.067 1172 1000 0.998
{.180 1023 0998 0.992 1.049  1.132 1002 1.000
[.140 1016 0999 0.995 1.038  1.105 1.003 1.000
1105 1012 1.000 0.996 1.032 1.085 1.003 1.000

(=R T- -RE - 3
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In this study, a new methodology and fundamental solution are proposed and are shown
to be a powerful tool for constructing the complicated reflected waves. The Cagniard—de
Hoop inverse method is used, enabling us to investigate in detail the structure of the wave
pattern. The complete solutions of the Green functions for a half space subjected to a
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dynamic point source are presented in an exact closed form. The present results provide
valuable fundamental solutions which can be used to solve more difficult elastodynamic
transient problems in half space by a boundary element numerical method.

In order to investigate the characteristic time after which the transient effect can be



972 C.-H. Tsar and C.-C. Ma

6

4

ada sl 4y aa b b aia

2

Static |

0

VTS SRS |

h Ozz/ug
-4 2

Ak i g

6

P
p
B
]
4
4
4
]
3
E

vvvvvvvv

3
t/ah

Fig. 6a. Transient normal stress 4, of point A subjected to vertical displacement jump.

SP

]
o S Static

2 3
t/ah

Fig. 6b. Transicnt normal stress e, of point A subjected to horizontal displacement jump.

T T
§ Sr
© Y %
S ] Static
S oo m~
3 o]
L oT— P‘\\ ' . -
\S\ ../',____.__._.._.
b ~~ \\ ,/’
i N ;/ — Vertical
<3 N - == Horizontal
Pr
o
B AMARAAASAL A e e SRR
0 1 3 4 5
t/ah

Fig. 6¢. Transient relative displacement w, of point A to the origin subjected to vertical and
horizontal displacement jumps.



Point forces and displacement jumps for an elastic half space

~

bbbk

IPTTTTY N

-2
o o

Addidy

-4

h g2/ Muo
0 .2
wn

Fig. 7a. Transient normal stress a,, of point B subjected to vertical displacement jump.

p
P
p
-
4

t/ah

YTy

SS

]

3

3 P

o]
3 ] s
S o_‘ HD, tatic
T

]

e PP ps S

3 Frrrrrrrerrrrree e e

1 2 3 4

t/ah

Fig. 7b. Transient normal stress o5, of point B subjected to horizontal displacement jump.

IPr

00
aloaa
”

—Vertical -—--—Horizontal

Sr HO

\ -
i

SS

- — s e o

|

Fig. 7c. Transient relative displacement u, of point B to the origin subjected to vertical and horizontal

O TrrrrrrrrrrTTrTY YT T
1

displacement jumps.

973



974 C.-H. Tsai and C.-C. Ma

o~
7]
t/uh:-’.O
© 24
o7
S
~ ]
3 ] 8
]
] A
[«
4
132
g‘ —r — Py rrr v
0 10 20 30 40
x/h
Fig. 8. Transient vertical displacement u, of free surface related to the origin from a vertical point

force.

neglected, numerical results of stress and displacement based on the transient analysis are
presented and compared to the corresponding static solution. It is found that the dynamic
transient solution approaches the static value very quickly after the last reflected wave (SS
wave) has passed the ficld point.
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